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A local analytical solution of the problem of the motion of a point mass in a medium with a square law of drag is constructed, 
and simple analytical formulae are obtained for the main parameters of the trajectory of the point mass. It is shown that the 
trajectory can be calculated with high accuracy using a simple and economical algorithm. Examples are given. 8 2001 Elsevier 
Science Ltd. All rights reserved. 

The problem of the motion of a point mass in a medium with drag (the fundamental problem of external 
ballistics) has been considered in many papers [l-9], beginning with Euler’s [l], which developed a 
method of investigation, that later became known as Euler’s method. This method was used by him to 
solve the problem of the exact integration of the equation of the velocity hodograph for a quadratic 
relation between the drag of the medium and the velocity of the point mass. Later the problem was 
solved repeatedly by different methods (the small-parameter method, the constant-variation method, 
the perturbation method and Chaplygin’s method), but an accurate analytical solution was not found. 
Various forms of approximate solutions have been obtained [2-Q but they are not very convenient to 
use, since they are described by extremely lengthy formulae; moreover, they are often obtained assuming 
that the drag is small compared with the gravity force [4, 71. However, this assumption is not satisfied 
for the motion of certain objects, for example, a baseball or a golf ball, and hence various numerical 
schemes have been developed to integrate the equations of motion. Nevertheless, Euler’s approach 
enables simple analytical expressions to be obtained for the time and coordinates of the point mass in 
the form of a function of the known velocity of the point mass, by means of which one can construct 
the trajectory of the point mass and obtain the fundamental parameters of motion with high accuracy. 
The analytical solution proposed below differs from the other solutions in the simplicity of the formulae, 
ease of use, high accuracy and the absence of constraints imposed on the value of the drag. 

1. EQUATIONS OF MOTION AND CONSTRUCTION OF 
THE TRAJECTORY 

The problem of the motion of a point mass in a medium with a square law of the drag R = mgkV2, with 
the usual assumptions, reduces to solving the well-known system of differential equations [2] 

Q=-gsin0-gkV*, 6=-gcos8lV 

X = VcosO, y = VsinB 
(1.1) 

Here I/is the velocity of the point mass, m is its mass, 8 is the slope of the trajectory to the horizontal, 
g is the acceleration due to gravity,x,y are the Cartesian coordinates of the point, and k is a coefficient 
of proportionality (Fig. 1). 

The well-known solution [2] of Eqs (1. l), obtained by Euler’s method, consists of an explicit analytical 
dependence of the velocity on the slope of the trajectory and three quadratures 

v(e) = 
v, cos 90 

COST 1+kv,2(30~*e~(f(e~)-f(e)) 
(1.2) 

f(e) =-++ntg sin 8 ( -+- 8 x 1 ~0s~ 8 2 4 
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Here V. and O. are the initial values of the velocity and the slope of the trajectory respectively, to is the 
initial value of the time, and x0 and y. are the initial values of the coordinates of the point mass (in 
general non-zero). 

The integrals on the right-hand sides of (1.3) are not taken in finite form. Hence, to determine the 
variables t,x andy we must either integrate (1.1) numerically or evaluate the definite integrals (1.3). 

It turns out [9] that, using a special form of organised integration of quadratures (1.3) by parts in a 
fairly small interval [l3,,0], the variables t, x and y can be written in the form 

t=l +2(Vosin8,-Vsinf3) 
0 

g(2+&) 

+Vtsin2e0-V2sin28 V,2 sin2 8, - V2 sin2 8 x=x 
0 

2&l+@ 
7 

Y=Yo+ 

g(2 + E) 

(1.4) 

E = k(Vi sin O. + V2 sin Cl) (1.5) 

We will obtain the first of formulae (1.4). The method of calculating the quadratures is based on the use of the 
relation between an auxiliary variable u = Vcos0 and the independent variable 0. This relation has the following 
differential form [2] 

du 
k de -= - 

113 cos3 8 

We will consider the first of quadratures (1.3) and we write it, using the relation u = VcosO, in the form 

We take the integral (1.7) by parts 

utge 
9 

I e 
t=ta-- +- j tgedu = r. - 

Vsin0 e 

g e. gee --I B 
+i ;tgOdu 

e. gO0 

(1.6) 

(1.7) 

Using relation (1.6) we convert the last term 
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Hence 

,=,O Vsinee -krV2sinee 
8 

+k fd(V2sin8) 
g 

e0 
I f 
‘0 e. 

(1.8) 

Suppose the range of integration 8 - 00 = A8 is fairly small. Then the integral in (1.8) can be calculated as the 
area of a trapezium with bases to and t and height h = V*sinf3 - Vi sinOo. We have 

k i rd(V2 sine) 
e. 

_ k(‘;+r) 7 d(V2 

00 

sine)=ik(r,, +r)(V2sine- V~sin&_,) 

As a result, formula (1.8) takes the form . 

(the variable E is defined by relation (1.5)). Finally 

,=, 
0 

+ 2(Vosineo -Vsine) 

d2+E) 

We can similarly derive the other two formulae of (1.4). 

Hence, in a small interval [eo,e] the trajectory of the point mass can be approximated by Eqs (1.4). 
These formulae have a local form. We can calculate the whole trajectoxy very accurately in steps by 
calculating V(e), t(Q), x(O), y(e) using Eqs (1.2) and (1.4) at the right-hand end of the interval [e,,e] 
and taking them as the initial values for the following step 

v, = v(e), to = t(e), x0 =x(e), y. = y(e) 

This cyclical procedure replaces both numerical integration of system (1.1) and the evaluation of the 
integrals (1.3). The smaller the value of k the greater the range [80,8]of applicability of the formulae 
obtained. When k = 0, i.e. when there is no drag, formulae (1.4) reduce to the well-known accurate 
formulae of the theory of the parabolic motion of a point mass and become valid for any values of e. 
and 8. Moreover, formulae (1.4) are accurate in those finite intervals of [e,,e] where the variables t, x 
and y depend linearly on the auxiliary variable 
2 = V2 sine. 

As calculations show, the trajectory obtained by integrating system of equations (1 .l) and the trajectory 
constructed using formulae (1.2) and (1.4), are identical. Here, to construct the trajectory it is sufficient 
to use a step A8 = 8 - 80 of the order of 0.1”. Below we give an example of a calculation using formulae 
(1.2) and (1.4) of the trajectory of a baseball with the following initial values of V. and O. and a value 
of the coefficient k [3] 

VO = 44.69 m/s. 0, = 60”, k = 0.000548 s2/m2, g = 9.8 1 m/s2 U-9) 

8. deg 60 30 0 -30 -60 -70.11 
V, m/s 44.69 18.36 14.71 15.88 23.50 29.35 
1, s 0 2.153 3.052 3.889 5.391 6.533 
x, m 0 39.77 53.49 65.40 84.62 97.04 
Y. m 0 48.48 52.55 49.18 27.57 3x10-4 

Note that in this example, at the initial stage of the motion of the ball, the drag is greater than the 
gravity force, and during the motion its value changes by an order of magnitude. 
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2. A N A L Y T I C A L  F O R M U L A E  FOR 
D E T E R M I N I N G  THE MAIN P A R A M E T E R S  OF M O T I O N  

OF THE P O I N T  MASS 

Equations (1.4) enable us to obtain simple analytical formulae for the main parameters of motion of 
the point mass. In Fig. 2, for the values given in (1.9), we have drawn a graph of the coordinatesy against 
the auxiliary dimensionless variable Ry = -kV z sin0, where Ry is the projection of the normalized drag 
of the medium on the y axis. The variable Ry is similar to the above-mentioned variable z. It can be 
seen that, both at the ascending stage (the left part of the graph) and the descending stage (the right 
part) this graph is close to linear. Hence it follows that the maximum height of ascent of the point mass 
H can be obtained approximately using formula (1.4) for y in the finite interval [00,0], i.e. by taking 
0 = 0 in this formula. 

From the relation for the maximum height of ascent H we can derive comparatively simple 
approximate analytical formulae for the other parameters of motion of the point mass. We will give a 
complete summary of the formulae for the maximum height of ascent of the point mass H, the velocity 
at the vertex of the trajectory Va, the time of ascent ta, the range L, the time of motion t, the abscissa 
of the vertex of the trajectory xa, the final velocity V, and the angle of incidence Ok (see Fig. 1): 

H = I/°2 sin20° 
g(2 + kVo 2 sin 00) 

= V o cos 0 o vo 
~/I + kV02(sin 00 +cos 200 lntg(00/2 + It/4)) 

ta V g  k 2 J - T '  

2 H  L ( T - t ~ )  (2.1) T = I  a + , x a = 
g t a 23/~a 

Vk = 4 a 2 ( I - c 2 ) + d 2 ( t - b 2 ) +  2 a b c d - ( a b + c d )  

1 - b  2 - c  2 

O k = arcsin[c(1 +b) -~-k  ] 

L - x a  b = k g ( L - x a )  
a =  T - t a  , 2 , c =  

When k = 0 formulae (2.1) reduce to the corresponding formulae of the theory of the parabolic motion 
of a point mass. 
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Fig. 3 
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3. RESULTS AND CONCLUSIONS 

Formulae (2.1) enable us to calculate the fundamental parameters of motion of a point mass directly 
from the initial data V, and 0s, as in the theory of parabolic motion. As an example of the use of formulae 
(2.1) we calculated the motion of a baseball with the following initial conditions 

V,, = 39.62 m/s, 0, = 60” 

The following results were obtained (we indicate in parenthesis the value of the deviation from the 
exact value of the parameter, obtained using formulae (1.2) and (1.4) with a step of At3 = 0.1“) 

H = 43.72 m(-O.6%), v, = 13.91 m/s(O.O%) 

r, = 2.823 s (O.O%), L = 83.06 m (-0.9%) 

T = 5.980 s (O.O%), X, = 45.12m(-1.0%) 

Vk = 27.66 m/s (-O.l%), et = 48.61” (-0.3%) 

Analytical formulae (2.1) enable a parametric analysis and an optimization of the problem to be carried 
out. In Figs 3 and 4 we have drawn graphs of Vk(t3,) and L(eO) where V0 = 44.69 m/s. It can be seen 
that the final velocity is a minimum when 8s = 30” and the maximum range is obtained when 8s = 40”, 
whereas when k = 0 the value of the maximum range L,, = L (Cl, = 45”). 

Hence, the simple and convenient analytical formulae obtained by Euler’s method enable a solution 
to be constructed which is no less accurate than the numerical solution of the equations of motion. 
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